starina_driver_utils/
mmio.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! Type-safe MMIO register access.
//!
//! MMIO (Memory-Mapped I/O) is a mechanism to access hardware devices using
//! memory read and write operations. Unlike normal memory accesses, in MMIO,
//! you need to carefully handle endianness and unexpected compiler/CPU
//! optimizations. This module will help you.
//!
//! # Why is `&mut MappedFolio` required in `read` methods?
//!
//! This is to ensure that the caller has exclusive access to the MMIO
//! region. This is important because reads from MMIO may have side effects
//! (e.g. clearing an interrupt) and concurrent access to the same MMIO
//! region might lead to unexpected behavior.
//!
//! # Example (Goldfish RTC driver)
//!
//! In this example, two MMIO registers are defined: `TIME_LOW_REG` and
//! `TIME_HIGH_REG` and prints the current time read from the [Goldfish RTC](https://github.com/qemu/qemu/blob/master/hw/rtc/goldfish_rtc.c)
//! device.
//!
//! To access the MMIO registers, you need to acquire and map the MMIO region
//! using `MappedFolio::create_pinned`. Then, pass the mutable reference of
//! the `MappedFolio` to the `read` method of the MMIO register:
//!
//! ```rust
//! use starina_api::folio::MappedFolio;
//! use starina_driver_utils::mmio::{LittleEndian, MmioReg, ReadOnly};
//!
//! const MMIO_BASE: PAddr =PAddr::new(0x101000);
//!
//! const MMIO_SIZE: usize = 4096;
//! static TIME_LOW_REG: MmioReg<LittleEndian, ReadOnly, u32> = MmioReg::new(0x00);
//! static TIME_HIGH_REG: MmioReg<LittleEndian, ReadOnly, u32> = MmioReg::new(0x04);
//!
//! let mut folio = MappedFolio::create_pinned(MMIO_BASE, MMIO_SIZE).unwrap();
//! let low: u32 = TIME_LOW_REG.read(&mut folio);
//! let high: u32 = TIME_HIGH_REG.read(&mut folio);
//! let now: u64 = (high as u64) << 32 | (low as u64);
//!
//! let now_i64: i64 = now.try_into().unwrap();
//! let datetime = chrono::DateTime::from_timestamp_nanos(now_i64);
//! info!("now: {datetime}");
//! ```
use core::marker::PhantomData;

use starina_api::folio::MappedFolio;

/// A trait for endianness conversion.
pub trait Endianess {
    /// Converts a device-endian `u16` to host-endian `u16`.
    fn into_host_u16(&self, n: u16) -> u16;
    /// Converts a device-endian `u32` to host-endian `u32`.
    fn into_host_u32(&self, n: u32) -> u32;
    /// Converts a device-endian `u64` to host-endian `u64`.
    fn into_host_u64(&self, n: u64) -> u64;
    /// Converts a host-endian `u16` to device-endian `u16`.
    fn from_host_u16(&self, n: u16) -> u16;
    /// Converts a host-endian `u32` to device-endian `u32`.
    fn from_host_u32(&self, n: u32) -> u32;
    /// Converts a host-endian `u64` to device-endian `u64`.
    fn from_host_u64(&self, n: u64) -> u64;
}

/// Little-endian endianness.
pub struct LittleEndian;

impl Endianess for LittleEndian {
    fn into_host_u16(&self, n: u16) -> u16 {
        u16::from_le(n)
    }
    fn into_host_u32(&self, n: u32) -> u32 {
        u32::from_le(n)
    }
    fn into_host_u64(&self, n: u64) -> u64 {
        u64::from_le(n)
    }
    fn from_host_u16(&self, n: u16) -> u16 {
        u16::to_le(n)
    }
    fn from_host_u32(&self, n: u32) -> u32 {
        u32::to_le(n)
    }
    fn from_host_u64(&self, n: u64) -> u64 {
        u64::to_le(n)
    }
}

/// Big-endian endianness.
pub struct BigEndian;

impl Endianess for BigEndian {
    fn into_host_u16(&self, n: u16) -> u16 {
        u16::from_be(n)
    }
    fn into_host_u32(&self, n: u32) -> u32 {
        u32::from_be(n)
    }
    fn into_host_u64(&self, n: u64) -> u64 {
        u64::from_be(n)
    }
    fn from_host_u16(&self, n: u16) -> u16 {
        u16::to_be(n)
    }
    fn from_host_u32(&self, n: u32) -> u32 {
        u32::to_be(n)
    }
    fn from_host_u64(&self, n: u64) -> u64 {
        u64::to_be(n)
    }
}

/// A trait for defining allowed access types.
pub trait Access {}

/// Read-only MMIO register.
pub struct ReadOnly;

/// Write-only MMIO register.
pub struct WriteOnly;

/// Read-write MMIO register.
pub struct ReadWrite;

impl Access for ReadOnly {}
impl Access for WriteOnly {}
impl Access for ReadWrite {}

/// A memory-mapped I/O register.
///
/// This struct defines a memory-mapped I/O register. It is parameterized by:
///
/// - `E`: Endianness of the register ([`LittleEndian`], [`BigEndian`]).
/// - `A`: Access type of the register ([`ReadOnly`], [`WriteOnly`], [`ReadWrite`]).
/// - `T`: Type of the register (`u8`, `u16`, `u32`, `u64`).
pub struct MmioReg<E: Endianess, A: Access, T: Copy> {
    offset: usize,
    _pd1: PhantomData<E>,
    _pd2: PhantomData<A>,
    _pd3: PhantomData<T>,
}

impl<E: Endianess, A: Access, T: Copy> MmioReg<E, A, T> {
    /// Defines a MMIO register.
    pub const fn new(offset: usize) -> MmioReg<E, A, T> {
        MmioReg {
            offset,
            _pd1: PhantomData,
            _pd2: PhantomData,
            _pd3: PhantomData,
        }
    }

    /// Reads a value from the MMIO register with an offset.
    ///
    /// This is useful when the MMIO register spans multiple words or unaligned
    /// length, such as MAC address (6 bytes).
    pub fn do_read_with_offset(&self, folio: &mut MappedFolio, offset: usize) -> T {
        let vaddr = folio.vaddr().as_usize() + self.offset + offset * size_of::<T>();
        unsafe { core::ptr::read_volatile(vaddr as *const T) }
    }

    fn do_write_with_offset(&self, folio: &mut MappedFolio, offset: usize, value: T) {
        let vaddr = folio.vaddr().as_usize() + self.offset + offset * size_of::<T>();
        unsafe { core::ptr::write_volatile(vaddr as *mut T, value) };
    }
}

impl<E: Endianess, T: Copy> MmioReg<E, ReadOnly, T> {
    /// Reads a value from the MMIO register.
    pub fn read(&self, folio: &mut MappedFolio) -> T {
        self.do_read_with_offset(folio, 0)
    }

    pub fn read_with_offset(&self, folio: &mut MappedFolio, offset: usize) -> T {
        self.do_read_with_offset(folio, offset)
    }
}

impl<E: Endianess, T: Copy> MmioReg<E, WriteOnly, T> {
    /// Writes a value to the MMIO register.
    pub fn write(&self, folio: &mut MappedFolio, value: T) {
        self.do_write_with_offset(folio, 0, value)
    }
}

impl<E: Endianess, T: Copy> MmioReg<E, ReadWrite, T> {
    /// Reads a value from the MMIO register.
    pub fn read(&self, folio: &mut MappedFolio) -> T {
        self.do_read_with_offset(folio, 0)
    }

    /// Writes a value to the MMIO register with an offset.
    pub fn read_with_offset(&self, folio: &mut MappedFolio, offset: usize) -> T {
        self.do_read_with_offset(folio, offset)
    }

    /// Writes a value to the MMIO register.
    pub fn write(&self, folio: &mut MappedFolio, value: T) {
        self.do_write_with_offset(folio, 0, value)
    }

    /// Writes a value to the MMIO register with an offset.
    pub fn write_with_offset(&self, folio: &mut MappedFolio, offset: usize, value: T) {
        self.do_write_with_offset(folio, offset, value)
    }
}